Wouldn’t it be nice if a web store could propose the exact products you want? Or your online newspaper had news and TV series you are actually interested in? Or a user interface adjusted automatically to your requirements? These have been ideas I have heard many times during my 18 years in the data and analytics business. The problem is that those terms are mainly used by people who don’t know what they are talking about when talking with other people who won’t admit they don’t know what they are talking about.
To simplify, personalization is typically based on one, or a combination of three things:
But none of these are as simple to realise as one would think. When you ask preferences from people, most tick all boxes or no boxes, they either don’t concentrate or know what they really want. And if they indicate their preferences today, there is no guarantee they will match tomorrow’s preferences. Models can learn from yours and other similar user’s preferences. The system then starts to offer specific offers to you, that you may or may not use to buy those specific things. This in turn reinforces the system believing that you are interested only in those things. It narrows the options and offerings to you and in turn misses many things. The same happens in services like Facebook, and how it selects which people and posts to show in your daily feed. Another angle is that the system doesn’t even try to serve or help you better. It just tries to maximize sales or keep you engaged in the service. It offers you products and content that you are likely to buy or click. It focuses on maximum, short-term monetization. These issues are not new. People who work with personalization, machine learning and analytics have talked about them for over ten years. But it doesn’t stop many people dreaming about personalization, putting it in their business plans and presenting it as a key use case for ML and AI. It is not impossible that personalization could be more useful and one day we will have really valuable personalization that actually helps users. But it needs much more than what many solutions and business plans offer today. A fundamental starting point is to really understand, what people want to do and achieve in each use case. It is much harder than optimizing some clicks or processes. Let’s take some simple examples:
These are simple examples, but they illustrate how personalizing an experience is not a simple algorithm achieved by optimizing a few variables. The system should know your preferences now, your state of mind, the real reasons why you have done something earlier, and it should be there to help you, not just to sell you products and services. Personalization and AI are terms that have been diluted with stupid use and marketing of the terms. Both of them will be very important in the future. But many existing solutions and especially business plans are crap. They are crap produced by people who don’t really understand people’s needs and technology, but love to give the impression that they understand both things. There is no simple solution to change the situation for the better, but there are certain things that would help, for example:
Of course, there are smarter and smarter systems all the time. People are getting worried that AI knows everything about them and can utilize all that data. A system can have too much of your sensitive data, but often systems are more stupid than people expect. Real development happens with solutions that offer specific solutions for specific needs, not with those big plans that claim to solve all needs with big data and general personalization algorithms. And if it is your data in a system you can manage and that works for you, then at least you are represented and know the incentives the ‘intelligence’ works toward. |
AboutEst. 2009 Grow VC Group is building truly global digital businesses. The focus is especially on digitization, data and fintech services. We have very hands-on approach to build businesses and we always want to make them global, scale-up and have the real entrepreneurial spirit. Download
Research Report 1/2018: Distributed Technologies - Changing Finance and the Internet Research Report 1/2017: Machines, Asia And Fintech: Rise of Globalization and Protectionism as a Consequence Fintech Hybrid Finance Whitepaper Fintech And Digital Finance Insight & Vision Whitepaper Learn More About Our Companies: Archives
January 2023
Categories |